Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
نویسندگان
چکیده
Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.
منابع مشابه
Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels
Membranes with atomic level pores or constrictions are valuable for separation and catalysis. We report a graphene-based membrane with an interlayer spacing of 3.7 angstrom (Å). When graphene oxide nanoplates are functionalized and then reduced, the laminated reduced graphene oxide (rGO) nanoplates or functionalized rGO membrane is little affected by an intercalated fluid, and the interlayer sp...
متن کاملTwo-dimensional ion channel based soft-matter piezoelectricity
Hierarchically integrated nanoscale ionic conductors, including ion channels and ion pumps on cell membrane, are the structural and functional basis of the electric organ in many strong bioelectrogenesis systems, such as the electric eel (Electrophorus electricus), which is capable of generating electrical potentials of up to 600 V to stun prey and self-defense [1]. Recently, scientists have bu...
متن کاملOrdered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures.
A novel layered graphene-based architecture is achieved via an ordered self-assembly process. Amphipathic graphene nanosheets are joined horizontally into large sheets via edge splicing, and a cross-linking agent of poly(vinyl alcohol) bridges them into integrated three-dimensional monoliths with tunable interlayer spacing. This layered architecture possesses highly ordered and favorable microc...
متن کاملMolecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow
Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 2...
متن کاملAn Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors
In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets is investigated. The electrochemical properties of the produced electrode are studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques in 3M NaCl, NaOH, and KOH electrolytes. Scanning electron microscopy (SEM) is used to characterize the mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science advances
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2016